Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(8): e202300007, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853443

RESUMO

Organic π-systems with strong absorption in the near-infrared (NIR) region are promising candidates for photothermal therapy (PTT) and photodynamic therapy (PDT). However, the synthesis of NIR π-systems involves several steps and many of them display poor photothermal conversion efficiency (PTCE). Here we present the synthesis of a tetraimide-based donor-acceptor NIR π-system, 2EHex-B having absorbance in the range of 350-900 nm. Importantly, 2EHex-B is synthesized in two steps with a 70 % high yield. Moreover, 2EHex-B shows excellent PTCE up to 50 % and good biocompatibility when encapsulated in liposomes. The liposome coated 2EHex-B, (L-2EHex-B) showed good thermal stability and efficiently kills cancer cells via PTT. Additionally, L-2EHex-B shows good reactive singlet oxygen generation ability when irradiated with a 750 nm laser. 3D cell culture model - multicellular spheroids test was performed to evaluate the efficiency of PTT. The spheroids treated with L-2EHex-B after NIR light irradiation showed increased cell death from the core of the tumor toward the periphery. The easy access to 2EHex-B makes it a potential candidate for minimally invasive cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Luz , Oxigênio Singlete
2.
Chem Asian J ; 17(16): e202200494, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35621295

RESUMO

Cooperative supramolecular polymerization is important for the synthesis of functional supramolecular homo and block-copolymers of π-systems. Current strategies indicate the need of strong hydrogen bonding (H-bonding) and/or dipolar interactions in the π-systems to achieve cooperativity. In sharp contrast, here we report the cooperative supramolecular polymerization in alkyl chain substituted perylene diimides (alkyl PDIs) driven by dispersive interactions with molecular level understanding. Moreover, alkyl PDIs follow cooperative mechanism with cooperativity similar to the strong H-bonded π-systems (σ ∼10-5 ) despite the lack of strong H-bonding and dipolar interactions. Computer simulations show that this surprising phenomenon in alkyl PDIs is driven by the efficient dispersive interactions among the alkyl chains and π-cores due to their zigzag arrangement in the supramolecular polymer. Importantly, alkyl PDIs display cooperative supramolecular polymerization in both polar and non-polar solvents which is difficult for H-bonded/dipolar π-systems thus highlighting the advantages of dispersive interactions.

3.
Nat Chem ; 9(11): 1133-1139, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29064499

RESUMO

One of the enticing characteristics of supramolecular polymers is their thermodynamic reversibility, which is attractive, in particular, for stimuli-responsive applications. These polymers usually disassemble upon heating, but here we report a supramolecular polymerization that occurs upon heating as well as cooling. This behaviour arises from the use of a metalloporphyrin-based tailored monomer bearing eight amide-containing side chains, which assembles into a highly thermostable one-dimensional polymer through π-stacking and multivalent hydrogen-bonding interactions, and a scavenger, 1-hexanol, in a dodecane-based solvent. At around 50 °C, the scavenger locks the monomer into a non-polymerizable form through competing hydrogen bonding. On cooling, the scavenger preferentially self-aggregates, unlocking the monomer for polymerization. Heating also results in unlocking the monomer for polymerization, by disrupting the dipole and hydrogen-bonding interactions with the scavenger. Analogous to 'upper and lower critical solution temperature phenomena' for covalently bonded polymers, such a thermally bisignate feature may lead to supramolecular polymers with tailored complex thermoresponsive properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...